Renewal theory and computable convergence rates for geometrically ergodic Markov chains

نویسنده

  • Peter H. Baxendale
چکیده

We give computable bounds on the rate of convergence of the transition probabilities to the stationary distribution for a certain class of geometrically ergodic Markov chains. Our results are different from earlier estimates of Meyn and Tweedie, and from estimates using coupling, although we start from essentially the same assumptions of a drift condition towards a “small set”. The estimates show a noticeable improvement on existing results if the Markov chain is reversible with respect to its stationary distribution, and especially so if the chain is also positive. The method of proof uses the first-entrance last-exit decomposition, together with new quantitative versions of a result of Kendall from discrete renewal theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A constructive law of large numbers with application to countable Markov chains

Let X1,X2, . . . be a sequence of identically distributed, pairwise independent random variables with distribution P. Let the expected value be μ < ∞. Let S n = ∑i=1 Xi. It is well-known that S n/n converges to μ almost surely. We show that this convergence is effective in (P,μ). In particular, if P,μ are computable then the convergence is effective. On the other hand, if the convergence is eff...

متن کامل

Computable Convergence Rates for Subgeometrically Ergodic Markov Chains

In this paper, we give quantitative bounds on the f -total variation distance from convergence of an Harris recurrent Markov chain on an arbitrary under drift and minorisation conditions implying ergodicity at a sub-geometric rate. These bounds are then specialized to the stochastically monotone case, covering the case where there is no minimal reachable element. The results are illustrated on ...

متن کامل

Subgeometric rates of convergence of f -ergodic Markov chains

We study bounds on the rate of convergence of aperiodic Markov chains on a general state space to the stationary distribution. Our results generalize previous results on convergence rates for Markov chains [23]. We also improve results from [9] on convergence rates in the local renewal theorem. The results are applied to delayed random walks.

متن کامل

Three Kinds of Geometric Convergence for Markov Chains and the Spectral Gap Property

In this paper we investigate three types of convergence for geometrically ergodic Markov chains (MCs) with countable state space, which in general lead to different ‘rates of convergence’. For reversible Markov chains it is shown that these rates coincide. For general MCs we show some connections between their rates and those of the associated reversed MCs. Moreover, we study the relations betw...

متن کامل

A Perturbation Theory for Ergodic Properties of Markov Chains

Perturbations to Markov chains and Markov processes are considered. The unperturbed problem is assumed to be geometrically er-godic in the sense usually established through use of Foster-Lyapunov drift conditions. The perturbations are assumed to be uniform, in a weak sense, on bounded time intervals. The long-time behaviour of the perturbed chain is studied. Applications are given to numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003